Locally Efficient Estimators for Semiparametric Models With Measurement Error
نویسندگان
چکیده
We derive constructive locally efficient estimators in semiparametric measurement error models. The setting is one where the likelihood function depends on variables measured with and without error, where the variables measured without error can be modelled nonparametrically. The algorithm is based on backfitting. We show that if one adopts a parametric model for the latent variable measured with error and if this model is correct, then the estimator is semiparametric efficient; if the latent variable model is misspecified, our methods lead to a consistent and asymptotically normal estimator. Our method further produces an estimator of the nonparametric function that achieves the standard bias and variance property. We extend the methodology to allow for parameters in the measurement error model to be estimated by additional data in the form of replicates or instrumental variables. The methods are illustrated via a simulation study and a data example, where the putative latent variable distribution is a shifted lognormal, but concerns about the effects of misspecification of this assumption and the linear assumption of another covariate demands a more model-robust approach. A special case of wide interest is the partially linear measurement error model. If one assumes that the model error and the measurement error are both normally distributed, then our estimator has a closed form. When a normal model for the unobservable variable is also posited, our estimator becomes consistent and asymptotically normally distributed for the general partially linear measurement error model, even without any of the normality assumptions under which the estimator is originally derived. We show that the method in fact reduces to a same estimator in Liang et al. (1999), thus showing a previously unknown optimality property of their method.
منابع مشابه
Locally efficient semiparametric estimators for functional measurement error models
A class of semiparametric estimators are proposed in the general setting of functional measurement error models. The estimators follow from estimating equations that are based on the semiparametric efficient score derived under a possibly incorrect distributional assumption for the unobserved ‘measured with error’ covariates. It is shown that such estimators are consistent and asymptotically no...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملOn Closed Form Semiparametric Estimators for Measurement Error Models
We examine the locally efficient semiparametric estimator proposed by Tsiatis and Ma (2004) in the situation when a sufficient and complete statistic exists. We derive a closed form solution and show that when implemented in generalized linear models with normal measurement error, this estimator is equivalent to the efficient score estimator in Stefanski and Carroll (1987). We also demonstrate ...
متن کاملSemiparametric estimators of functional measurement error models with unknown error
We consider functional measurement error models where the measurement error distribution is estimated non-parametrically.We derive a locally efficient semiparametric estimator but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator is proposed, where the measurement error distribution is estimated through non-parametric kernel methods based on multiple me...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006